Additivity of Jordan maps on Jordan algebras
نویسندگان
چکیده
منابع مشابه
Additivity of maps preserving Jordan $eta_{ast}$-products on $C^{*}$-algebras
Let $mathcal{A}$ and $mathcal{B}$ be two $C^{*}$-algebras such that $mathcal{B}$ is prime. In this paper, we investigate the additivity of maps $Phi$ from $mathcal{A}$ onto $mathcal{B}$ that are bijective, unital and satisfy $Phi(AP+eta PA^{*})=Phi(A)Phi(P)+eta Phi(P)Phi(A)^{*},$ for all $Ainmathcal{A}$ and $Pin{P_{1},I_{mathcal{A}}-P_{1}}$ where $P_{1}$ is a nontrivial projection in $mathcal{A...
متن کاملAdditivity of Jordan Elementary Maps on Rings
We prove that Jordan elementary surjective maps on rings are automatically additive. Elementary operators were originally introduced by Brešar and Šerml ([1]). In the last decade, elementary maps on operator algebras as well as on rings attracted more and more attentions. It is very interesting that elementary maps and Jordan elementary maps on some algebras and rings are automatically additive...
متن کاملadditivity of maps preserving jordan $eta_{ast}$-products on $c^{*}$-algebras
let $mathcal{a}$ and $mathcal{b}$ be two $c^{*}$-algebras such that $mathcal{b}$ is prime. in this paper, we investigate the additivity of maps $phi$ from $mathcal{a}$ onto $mathcal{b}$ that are bijective, unital and satisfy $phi(ap+eta pa^{*})=phi(a)phi(p)+eta phi(p)phi(a)^{*},$ for all $ainmathcal{a}$ and $pin{p_{1},i_{mathcal{a}}-p_{1}}$ where $p_{1}$ is a nontrivial projection in $mathcal{a...
متن کاملAdditivity of Jordan Triple Product Homomorphisms on Generalized Matrix Algebras
In this article, it is proved that under some conditions every bijective Jordan triple product homomorphism from generalized matrix algebras onto rings is additive. As a corollary, we obtain that every bijective Jordan triple product homomorphism from Mn(A) (A is not necessarily a prime algebra) onto an arbitrary ring R is additive.
متن کاملJordan Maps on Standard Operator Algebras
Jordan isomorphisms of rings are defined by two equations. The first one is the equation of additivity while the second one concerns multiplicativity with respect to the so-called Jordan product. In this paper we present results showing that on standard operator algebras over spaces with dimension at least 2, the bijective solutions of that second equation are automatically additive.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2009
ISSN: 0024-3795
DOI: 10.1016/j.laa.2009.02.022